小红书AI文章生成技巧与WordPress集成开发高级实战指南

小红书AI文章生成基础架构

小红书平台的内容创作需要特定的风格和结构,通过AI技术可以大幅提升创作效率。基础架构主要包括内容分析、风格学习和文章生成三个核心模块。首先,我们需要建立一个能够分析小红书热门文章特征的系统,提取关键词、标题模式、段落结构和情感倾向。


import requests
from bs4 import BeautifulSoup
import jieba
import jieba.analyse

def analyze_xiaohongshu_post(url):
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
    }
    response = requests.get(url, headers=headers)
    soup = BeautifulSoup(response.text, '.parser')
    
     提取文章内容
    content = soup.find('div', class_='note-text').get_text()
    
     提取关键词
    keywords = jieba.analyse.extract_tags(content, topK=10, withWeight=True)
    
     分析标题模式
    title = soup.find('h1', class_='title').get_text()
    
    return {
        'content': content,
        'keywords': keywords,
        'title_pattern': analyze_title_pattern(title),
        'structure': analyze_content_structure(content)
    }

def analyze_title_pattern(title):
     分析标题模式,如疑问句、数字列表、情感词等
    patterns = {
        'question': '?' in title,
        'list': any(char.isdigit() for char in title),
        'emotion': len(re.findall(r'[!!。.]', title)) > 0
    }
    return patterns

这段代码实现了小红书文章的基础分析功能,包括内容提取、关键词分析和标题模式识别。运行此代码前,请确保已安装requests、beautifulsoup4和jieba库。代码中的headers模拟了浏览器访问,避免被网站识别为爬虫。analyze_title_pattern函数特别关注小红书常见的标题模式,如疑问句、数字列表和情感表达,这些是平台热门文章的典型特征。

WordPress与AI工具集成方法

将AI能力集成到WordPress中,可以通过API调用和插件开发两种方式实现。以下是使用WordPress REST API与AI服务集成的核心代码:


 'POST',
        'callback' => 'ai_generate_xiaohongshu_content',
        'permission_callback' => function () {
            return current_user_can('edit_posts');
        }
    ));
});

// AI内容生成函数
function ai_generate_xiaohongshu_content(WP_REST_Request $request) {
    $parameters = $request->get_params();
    $topic = sanitize_text_field($parameters['topic']);
    $style = sanitize_text_field($parameters['style']);
    $keywords = sanitize_text_field($parameters['keywords']);
    
    // 调用AI服务API
    $ai_response = call_ai_service($topic, $style, $keywords);
    
    if (is_wp_error($ai_response)) {
        return new WP_Error('ai_error', 'Failed to generate content', array('status' => 500));
    }
    
    // 处理AI返回的内容
    $content = process_ai_content($ai_response);
    
    // 创建WordPress文章
    $post_id = wp_insert_post(array(
        'post_title' => $content['title'],
        'post_content' => $content['body'],
        'post_status' => 'draft',
        'post_author' => get_current_user_id(),
        'post_category' => array(1) // 默认分类
    ));
    
    if (is_wp_error($post_id)) {
        return new WP_Error('post_error', 'Failed to create post', array('status' => 500));
    }
    
    return array(
        'success' => true,
        'post_id' => $post_id,
        'title' => $content['title'],
        'preview' => substr($content['body'], 0, 200) . '...'
    );
}

// 调用AI服务
function call_ai_service($topic, $style, $keywords) {
    $api_url = 'https://api.example.com/ai/generate';
    $api_key = get_option('ai_service_api_key');
    
    $response = wp_remote_post($api_url, array(
        'headers' => array(
            'Content-Type' => 'application/json',
            'Authorization' => 'Bearer ' . $api_key
        ),
        'body' => json_encode(array(
            'topic' => $topic,
            'style' => $style,
            'keywords' => $keywords,
            'platform' => 'xiaohongshu'
        ))
    ));
    
    if (is_wp_error($response)) {
        return $response;
    }
    
    $body = json_decode(wp_remote_retrieve_body($response), true);
    
    if (isset($body['error'])) {
        return new WP_Error('api_error', $body['error']);
    }
    
    return $body;
}

// 处理AI返回的内容
function process_ai_content($ai_response) {
    // 提取标题和正文
    $title = $ai_response['title'];
    $body = $ai_response['content'];
    
    // 添加小红书特有的标签和格式
    $body = add_xiaohongshu_formatting($body);
    
    return array(
        'title' => $title,
        'body' => $body
    );
}

// 添加小红书特有的格式
function add_xiaohongshu_formatting($content) {
    // 添加表情符号
    $content = preg_replace('/(.|!|?)/', '$1✨', $content);
    
    // 添加标签
    $tags = array('小红书', '生活分享', '日常');
    $content .= "nn" . implode(' ', $tags);
    
    return $content;
}

这段代码实现了一个WordPress插件,通过REST API端点接收请求,调用AI服务生成小红书风格的内容,并自动创建WordPress文章。代码中包含了完整的错误处理机制,确保在API调用失败或文章创建失败时能够返回适当的错误信息。add_xiaohongshu_formatting函数特别添加了小红书平台特有的格式元素,如表情符号和标签,使生成的内容更符合平台风格。

自定义功能开发

为了进一步提升AI生成内容的质量和适用性,我们需要开发一些自定义功能。以下是一个基于用户反馈的内容优化系统:


// AI内容优化器
class AIContentOptimizer {
    constructor(apiKey) {
        this.apiKey = apiKey;
        this.feedbackData = [];
        this.optimizationRules = {
            titleLength: { min: 10, max: 30 },
            paragraphLength: { min: 50, max: 200 },
            keywordDensity: { min: 0.01, max: 0.03 },
            emotionScore: { min: 0.3, max: 0.8 }
        };
    }

    // 分析内容质量
    analyzeContent(content) {
        const analysis = {
            titleLength: content.title.length,
            paragraphLength: this.calculateAverageParagraphLength(content.body),
            keywordDensity: this.calculateKeywordDensity(content.body, content.keywords),
            emotionScore: this.calculateEmotionScore(content.body),
            readabilityScore: this.calculateReadabilityScore(content.body)
        };

        return analysis;
    }

    // 根据分析结果优化内容
    optimizeContent(content, analysis) {
        let optimizedContent = { ...content };

        // 优化标题长度
        if (analysis.titleLength  this.optimizationRules.titleLength.max) {
            optimizedContent.title = this.optimizeTitle(content.title);
        }

        // 优化段落长度
        if (analysis.paragraphLength  this.optimizationRules.paragraphLength.max) {
            optimizedContent.body = this.optimizeParagraphLength(content.body);
        }

        // 优化关键词密度
        if (analysis.keywordDensity  this.optimizationRules.keywordDensity.max) {
            optimizedContent.body = this.optimizeKeywordDensity(content.body, content.keywords);
        }

        // 优化情感表达
        if (analysis.emotionScore  this.optimizationRules.emotionScore.max) {
            optimizedContent.body = this.optimizeEmotionExpression(content.body);
        }

        return optimizedContent;
    }

    // 优化标题
    optimizeTitle(title) {
        // 调用AI服务优化标题
        return this.callAIService('optimize_title', { title });
    }

    // 优化段落长度
    optimizeParagraphLength(body) {
        const paragraphs = body.split('nn');
        const optimizedParagraphs = paragraphs.map(paragraph => {
            if (paragraph.length  this.optimizationRules.paragraphLength.max) {
                // 分割长段落
                return this.splitParagraph(paragraph);
            }
            return paragraph;
        });

        return optimizedParagraphs.join('nn');
    }

    // 优化关键词密度
    optimizeKeywordDensity(body, keywords) {
        // 调用AI服务调整关键词密度
        return this.callAIService('optimize_keyword_density', { body, keywords });
    }

    // 优化情感表达
    optimizeEmotionExpression(body) {
        // 调用AI服务增强情感表达
        return this.callAIService('optimize_emotion', { body });
    }

    // 计算平均段落长度
    calculateAverageParagraphLength(body) {
        const paragraphs = body.split('nn').filter(p => p.trim().length > 0);
        const totalLength = paragraphs.reduce((sum, p) => sum + p.length, 0);
        return totalLength / paragraphs.length;
    }

    // 计算关键词密度
    calculateKeywordDensity(body, keywords) {
        const words = body.split(/s+/);
        const keywordCount = keywords.reduce((count, keyword) => {
            const regex = new RegExp(keyword, 'gi');
            const matches = body.match(regex);
            return count + (matches ? matches.length : 0);
        }, 0);

        return keywordCount / words.length;
    }

    // 计算情感得分
    calculateEmotionScore(body) {
        // 简单情感分析,实际应用中可使用更复杂的NLP模型
        const emotionWords = ['喜欢', '爱', '开心', '快乐', '美好', '惊喜', '推荐', '棒'];
        const regex = new RegExp(emotionWords.join('|'), 'gi');
        const matches = body.match(regex);
        const emotionCount = matches ? matches.length : 0;
        const words = body.split(/s+/);
        
        return Math.min(emotionCount / words.length  10, 1);
    }

    // 计算可读性得分
    calculateReadabilityScore(body) {
        // 简单可读性计算,实际应用中可使用更复杂的算法
        const sentences = body.split(/[.!?]+/).filter(s => s.trim().length > 0);
        const words = body.split(/s+/);
        const avgWordsPerSentence = words.length / sentences.length;
        
        // 简单评分:每句词数越少,可读性越高
        return Math.max(0, 1 - (avgWordsPerSentence - 10) / 20);
    }

    // 调用AI服务
    async callAIService(endpoint, params) {
        try {
            const response = await fetch(`https://api.example.com/ai/${endpoint}`, {
                method: 'POST',
                headers: {
                    'Content-Type': 'application/json',
                    'Authorization': `Bearer ${this.apiKey}`
                },
                body: JSON.stringify(params)
            });

            const data = await response.json();
            
            if (data.error) {
                console.error('AI service error:', data.error);
                return params.body || params.title; // 返回原始内容作为后备
            }

            return data.result;
        } catch (error) {
            console.error('Error calling AI service:', error);
            return params.body || params.title; // 返回原始内容作为后备
        }
    }

    // 记录用户反馈
    recordFeedback(contentId, feedback) {
        this.feedbackData.push({
            contentId,
            feedback,
            timestamp: new Date().toISOString()
        });

        // 根据反馈调整优化规则
        this.adjustOptimizationRules(feedback);
    }

    // 根据反馈调整优化规则
    adjustOptimizationRules(feedback) {
        // 简单示例:根据反馈调整情感得分范围
        if (feedback.emotion === 'too_low') {
            this.optimizationRules.emotionScore.min += 0.05;
        } else if (feedback.emotion === 'too_high') {
            this.optimizationRules.emotionScore.max -= 0.05;
        }

        // 确保规则在合理范围内
        this.optimizationRules.emotionScore.min = Math.max(0.1, Math.min(0.5, this.optimizationRules.emotionScore.min));
        this.optimizationRules.emotionScore.max = Math.max(0.4, Math.min(0.9, this.optimizationRules.emotionScore.max));
    }
}

// 使用示例
const optimizer = new AIContentOptimizer('your-api-key');

// 分析内容
const content = {
    title: '夏日清爽护肤小技巧',
    body: '夏天到了,皮肤容易出油。今天分享几个清爽护肤的小技巧...',
    keywords: ['护肤', '夏天', '清爽']
};

const analysis = optimizer.analyzeContent(content);
console.log('Content analysis:', analysis);

// 优化内容
const optimizedContent = optimizer.optimizeContent(content, analysis);
console.log('Optimized content:', optimizedContent);

// 记录用户反馈
optimizer.recordFeedback('post-123', {
    emotion: 'too_low',
    readability: 'good',
    overall: 'satisfactory'
});

这段JavaScript代码实现了一个AI内容优化器类,可以分析生成内容的质量并根据预设规则进行优化。代码中包含了多种优化功能,如标题长度优化、段落长度调整、关键词密度优化和情感表达增强。特别值得注意的是,该系统还包含了用户反馈机制,可以根据用户反馈动态调整优化规则,使系统不断学习和改进。calculateEmotionScore函数使用简单的情感词匹配来评估内容的情感表达强度,实际应用中可以替换为更复杂的NLP模型以提高准确性。

高级模块实现

为了实现更高级的小红书AI文章生成功能,我们需要开发一些专门的模块。以下是一个基于深度学习的风格迁移模块,可以将普通内容转换为小红书风格:


import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import numpy as np
import re
import jieba
from collections import Counter

class XiaohongshuStyleDataset(Dataset):
    def __init__(self, content_files, style_files, max_length=512):
        self.content_texts = self.load_texts(content_files)
        self.style_texts = self.load_texts(style_files)
        self.max_length = max_length
        self.vocab = self.build_vocab(self.content_texts + self.style_texts)
        self.word_to_idx = {word: idx for idx, word in enumerate(self.vocab)}
        
    def load_texts(self, files):
        texts = []
        for file in files:
            with open(file, 'r', encoding='utf-8') as f:
                texts.extend([line.strip() for line in f if line.strip()])
        return texts
    
    def build_vocab(self, texts):
        all_words = []
        for text in texts:
            words = jieba.lcut(text)
            all_words.extend(words)
        
        word_counts = Counter(all_words)
         保留最常见的词汇
        vocab = ['', ''] + [word for word, _ in word_counts.most_common(10000)]
        return vocab
    
    def text_to_sequence(self, text):
        words = jieba.lcut(text)
        sequence = [self.word_to_idx.get(word, self.word_to_idx['']) for word in words]
        
         填充或截断到固定长度
        if len(sequence) < self.max_length:
            sequence += [self.word_to_idx['']]  (self.max_length - len(sequence))
        else:
            sequence = sequence[:self.max_length]
            
        return torch.tensor(sequence, dtype=torch.long)
    
    def __len__(self):
        return min(len(self.content_texts), len(self.style_texts))
    
    def __getitem__(self, idx):
        content_seq = self.text_to_sequence(self.content_texts[idx])
        style_seq = self.text_to_sequence(self.style_texts[idx])
        return content_seq, style_seq

class StyleTransferModel(nn.Module):
    def __init__(self, vocab_size, embedding_dim=256, hidden_dim=512, num_layers=2):
        super(StyleTransferModel, self).__init__()
        
        self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=0)
        self.encoder = nn.LSTM(embedding_dim, hidden_dim, num_layers, batch_first=True, dropout=0.2)
        self.style_encoder = nn.LSTM(embedding_dim, hidden_dim, num_layers, batch_first=True, dropout=0.2)
        self.decoder = nn.LSTM(embedding_dim + hidden_dim, hidden_dim, num_layers, batch_first=True, dropout=0.2)
        self.output_layer = nn.Linear(hidden_dim, vocab_size)
        
    def forward(self, content_input, style_input, target_input=None):
         编码内容
        content_embedded = self.embedding(content_input)
        content_encoded, (content_h, content_c) = self.encoder(content_embedded)
        
         编码风格
        style_embedded = self.embedding(style_input)
        style_encoded, (style_h, style_c) = self.style_encoder(style_embedded)
        
         获取风格特征
        style_features = style_encoded[:, -1, :].unsqueeze(1).repeat(1, content_encoded.size(1), 1)
        
         训练阶段
        if target_input is not None:
            target_embedded = self.embedding(target_input)
            
             将内容编码和风格特征拼接
            decoder_input = torch.cat([content_encoded, style_features], dim=2)
            
             解码
            decoder_output, _ = self.decoder(decoder_input)
            output = self.output_layer(decoder_output)
            
            return output
        
         推理阶段
        else:
            batch_size = content_input.size(0)
            seq_length = content_input.size(1)
            
             初始化解码器输入
            decoder_input = torch.cat([content_encoded, style_features], dim=2)
            
             解码
            decoder_output, _ = self.decoder(decoder_input)
            output = self.output_layer(decoder_output)
            
            return output

class XiaohongshuStyleTransfer:
    def __init__(self, model_path=None):
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.model = None
        self.vocab = None
        self.word_to_idx = None
        self.idx_to_word = None
        
        if model_path:
            self.load_model(model_path)
    
    def load_model(self, model_path):
        checkpoint = torch.load(model_path, map_location=self.device)
        
         重建词汇表
        self.vocab = checkpoint['vocab']
        self.word_to_idx = {word: idx for idx, word in enumerate(self.vocab)}
        self.idx_to_word = {idx: word for idx, word in enumerate(self.vocab)}
        
         重建模型
        vocab_size = len(self.vocab)
        self.model = StyleTransferModel(vocab_size).to(self.device)
        self.model.load_state_dict(checkpoint['model_state_dict'])
        self.model.eval()
    
    def train(self, content_files, style_files, epochs=10, batch_size=32, learning_rate=0.001):
         准备数据集
        dataset = XiaohongshuStyleDataset(content_files, style_files)
        dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
        
         保存词汇表
        self.vocab = dataset.vocab
        self.word_to_idx = dataset.word_to_idx
        self.idx_to_word = {idx: word for idx, word in enumerate(self.vocab)}
        
         初始化模型
        vocab_size = len(self.vocab)
        self.model = StyleTransferModel(vocab_size).to(self.device)
        
         定义损失函数和优化器
        criterion = nn.CrossEntropyLoss(ignore_index=0)   忽略填充标记
        optimizer = optim.Adam(self.model.parameters(), lr=learning_rate)
        
         训练循环
        for epoch in range(epochs):
            total_loss = 0
            
            for batch_idx, (content_seqs, style_seqs) in enumerate(dataloader):
                content_seqs = content_seqs.to(self.device)
                style_seqs = style_seqs.to(self.device)
                
                 前向传播
                outputs = self.model(content_seqs, style_seqs, style_seqs)
                
                 计算损失
                loss = criterion(outputs.view(-1, outputs.size(-1)), style_seqs.view(-1))
                
                 反向传播和优化
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                
                total_loss += loss.item()
                
                if batch_idx % 100 == 0:
                    print(f'Epoch {epoch+1}/{epochs}, Batch {batch_idx}/{len(dataloader)}, Loss: {loss.item():.4f}')
            
            avg_loss = total_loss / len(dataloader)
            print(f'Epoch {epoch+1}/{epochs}, Average Loss: {avg_loss:.4f}')
        
         保存模型
        self.save_model('xiaohongshu_style_transfer_model.pth')
    
    def save_model(self, path):
        torch.save({
            'model_state_dict': self.model.state_dict(),
            'vocab': self.vocab
        }, path)
    
    def transfer_style(self, content_text):
        if self.model is None:
            raise ValueError("Model not loaded. Please train or load a model first.")
        
         预处理输入文本
        content_seq = self.text_to_sequence(content_text).unsqueeze(0).to(self.device)
        
         生成风格参考(使用随机选择的小红书风格文本)
        style_texts = [
            "今天分享一个超好用的小技巧!✨",
            "姐妹们,这个真的太香了!强烈推荐!👍",
            "挖到宝了!这个方法简直绝绝子!💯"
        ]
        style_text = np.random.choice(style_texts)
        style_seq = self.text_to_sequence(style_text).unsqueeze(0).to(self.device)
        
         风格迁移
        with torch.no_grad():
            output = self.model(content_seq, style_seq)
            
             获取预测的词索引
            _, predicted = torch.max(output, dim=2)
            predicted = predicted.squeeze(0).cpu().numpy()
        
         将索引转换为文本
        result_words = [self.idx_to_word[idx] for idx in predicted if idx != 0]   忽略填充标记
        result_text = ''.join(result_words)
        
         后处理:添加小红书特有的表情符号和标签
        result_text = self.add_xiaohongshu_elements(result_text)
        
        return result_text
    
    def text_to_sequence(self, text):
        words = jieba.lcut(text)
        sequence = [self.word_to_idx.get(word, self.word_to_idx['']) for word in words]
        
         填充或截断到固定长度
        max_length = 512
        if len(sequence) < max_length:
            sequence += [self.word_to_idx['']]  (max_length - len(sequence))
        else:
            sequence = sequence[:max_length]
            
        return torch.tensor(sequence, dtype=torch.long)
    
    def add_xiaohongshu_elements(self, text):
         添加表情符号
        text = re.sub(r'([。!?])', r'1✨', text)
        
         添加标签
        tags = ['生活分享', '日常', '推荐']
        text += 'nn' + ' '.join(tags)
        
        return text

 使用示例
if __name__ == "__main__":
     初始化风格迁移器
    style_transfer = XiaohongshuStyleTransfer()
    
     训练模型(如果有训练数据)
     style_transfer.train(['content.txt'], ['xiaohongshu_style.txt'], epochs=5)
    
     加载预训练模型
    style_transfer.load_model('xiaohongshu_style_transfer_model.pth')
    
     进行风格迁移
    content = "今天我想分享一个护肤小技巧。每天早晚使用保湿霜可以让皮肤保持水润。"
    styled_content = style_transfer.transfer_style(content)
    print("原始内容:", content)
    print("小红书风格内容:", styled_content)

这段Python代码实现了一个基于深度学习的小红书风格迁移系统。该系统使用LSTM神经网络模型,可以将普通内容转换为小红书特有的风格。代码中包含了完整的数据处理、模型训练和推理流程。XiaohongshuStyleDataset类负责加载和预处理文本数据,StyleTransferModel类定义了风格迁移的神经网络结构,XiaohongshuStyleTransfer类提供了训练和推理的高级接口。特别值得注意的是,add_xiaohongshu_elements方法会在生成的内容中添加小红书平台特有的表情符号和标签,使内容更符合平台风格。在实际应用中,你需要准备足够的小红书风格文本作为训练数据,以获得更好的风格迁移效果。

代码优化与性能提升

为了确保AI文章生成系统的高效运行,我们需要对代码进行优化和性能提升。以下是一个优化后的异步处理系统,可以大幅提升内容生成速度:


const { Worker, isMainThread, parentPort, workerData } = require('worker_threads');
const path = require('path');
const fs = require('fs').promises;
const { promisify } = require('util');
const redis = require('redis');
const { createClient } = redis;

// Redis客户端
const redisClient = createClient({
    url: 'redis://localhost:6379'
});
redisClient.on('error', (err) => console.log('Redis Client Error', err));
const redisGet = promisify(redisClient.get).bind(redisClient);
const redisSet = promisify(redisClient.set).bind(redisClient);

// 异步任务队列
class TaskQueue {
    constructor(concurrency = 4) {
        this.concurrency = concurrency;
        this.running = 0;
        this.queue = [];
    }

    async run(task) {
        return new Promise((resolve, reject) => {
            this.queue.push({ task, resolve, reject });
            this.next();
        });
    }

    next() {
        while (this.running  {
                    this.running--;
                    this.next();
                });
        }
    }
}

// AI内容生成器
class AIContentGenerator {
    constructor(options = {}) {
        this.apiKey = options.apiKey || '';
        this.cacheEnabled = options.cacheEnabled !== false;
        this.cacheTTL = options.cacheTTL || 3600; // 默认缓存1小时
        this.workers = [];
        this.workerCount = options.workerCount || 4;
        this.taskQueue = new TaskQueue(this.workerCount);
        
        // 初始化工作线程
        this.initWorkers();
    }

    // 初始化工作线程
    initWorkers() {
        for (let i = 0; i  {
                console.error(`Worker ${i} error:`, err);
            });
            
            worker.on('exit', (code) => {
                if (code !== 0) {
                    console.error(`Worker ${i} stopped with exit code ${code}`);
                }
            });
            
            this.workers.push(worker);
        }
    }

    // 生成内容
    async generateContent(params) {
        const { topic, style, keywords, length = 'medium' } = params;
        
        // 生成缓存键
        const cacheKey = `ai_content:${topic}:${style}:${keywords}:${length}`;
        
        // 尝试从缓存获取
        if (this.cacheEnabled) {
            try {
                const cachedContent = await redisGet(cacheKey);
                if (cachedContent) {
                    return JSON.parse(cachedContent);
                }
            } catch (err) {
                console.error('Cache retrieval error:', err);
            }
        }
        
        // 使用任务队列处理请求
        const content = await this.taskQueue.run(async () => {
            // 选择工作线程(简单的轮询策略)
            const workerIndex = Math.floor(Math.random()  this.workerCount);
            const worker = this.workers[workerIndex];
            
            return new Promise((resolve, reject) => {
                const requestId = Date.now().toString() + Math.random().toString().substr(2, 5);
                
                // 设置超时
                const timeout = setTimeout(() => {
                    reject(new Error('Content generation timeout'));
                }, 30000); // 30秒超时
                
                // 监听工作线程响应
                const messageHandler = (msg) => {
                    if (msg.requestId === requestId) {
                        clearTimeout(timeout);
                        worker.removeListener('message', messageHandler);
                        
                        if (msg.error) {
                            reject(new Error(msg.error));
                        } else {
                            resolve(msg.content);
                        }
                    }
                };
                
                worker.on('message', messageHandler);
                
                // 发送任务到工作线程
                worker.postMessage({
                    requestId,
                    task: 'generateContent',
                    params: { topic, style, keywords, length }
                });
            });
        });
        
        // 缓存结果
        if (this.cacheEnabled && content) {
            try {
                await redisSet(cacheKey, JSON.stringify(content), 'EX', this.cacheTTL);
            } catch (err) {
                console.error('Cache storage error:', err);
            }
        }
        
        return content;
    }

    // 批量生成内容
    async generateBatchContent(tasks) {
        const promises = tasks.map(task => this.generateContent(task));
        return Promise.all(promises);
    }

    // 优化内容
    async optimizeContent(content, options = {}) {
        const { optimizeFor = 'engagement', platform = 'xiaohongshu' } = options;
        
        // 使用任务队列处理优化请求
        return this.taskQueue.run(async () => {
            const workerIndex = Math.floor(Math.random()  this.workerCount);
            const worker = this.workers[workerIndex];
            
            return new Promise((resolve, reject) => {
                const requestId = Date.now().toString() + Math.random().toString().substr(2, 5);
                
                // 设置超时
                const timeout = setTimeout(() => {
                    reject(new Error('Content optimization timeout'));
                }, 20000); // 20秒超时
                
                // 监听工作线程响应
                const messageHandler = (msg) => {
                    if (msg.requestId === requestId) {
                        clearTimeout(timeout);
                        worker.removeListener('message', messageHandler);
                        
                        if (msg.error) {
                            reject(new Error(msg.error));
                        } else {
                            resolve(msg.optimizedContent);
                        }
                    }
                };
                
                worker.on('message', messageHandler);
                
                // 发送任务到工作线程
                worker.postMessage({
                    requestId,
                    task: 'optimizeContent',
                    params: { content, optimizeFor, platform }
                });
            });
        });
    }

    // 关闭生成器
    async close() {
        // 终止所有工作线程
        for (const worker of this.workers) {
            await worker.terminate();
        }
        
        // 关闭Redis连接
        await redisClient.quit();
    }
}

// 工作线程代码 (ai-worker.js)
if (!isMainThread) {
    const { workerData } = require('worker_threads');
    const { apiKey, workerId } = workerData;
    
    // 模拟AI服务调用
    async function callAIService(params) {
        // 这里应该是实际的AI服务调用
        // 为了示例,我们模拟一个延迟的响应
        await new Promise(resolve => setTimeout(resolve, 1000 + Math.random()  2000));
        
        // 模拟生成的内容
        const content = {
            title: `${params.topic}的小红书分享✨`,
            body: `今天想和大家分享关于${params.topic}的一些心得!${params.keywords.map(k => `${k}`).join(' ')}nn` +
                  `这个${params.style}风格的内容真的太棒了!强烈推荐大家尝试一下!👍nn` +
                  `如果你有更好的建议,欢迎在评论区留言哦!💕`,
            tags: ['小红书', '生活分享', '推荐']
        };
        
        return content;
    }
    
    // 模拟内容优化
    async function optimizeContent(content, options) {
        // 这里应该是实际的内容优化逻辑
        // 为了示例,我们模拟一个延迟的响应
        await new Promise(resolve => setTimeout(resolve, 500 + Math.random()  1000));
        
        // 模拟优化后的内容
        const optimizedContent = {
            ...content,
            title: content.title + '(优化版)✨',
            body: content.body.replace(/太棒了/g, '超级棒!').replace(/强烈推荐/g, '墙裂推荐!'),
            optimized: true
        };
        
        return optimizedContent;
    }
    
    // 监听主线程消息
    parentPort.on('message', async (msg) => {
        const { requestId, task, params } = msg;
        
        try {
            let result;
            
            if (task === 'generateContent') {
                result = await callAIService(params);
                parentPort.postMessage({ requestId, content: result });
            } else if (task === 'optimizeContent') {
                result = await optimizeContent(params.content, params);
                parentPort.postMessage({ requestId, optimizedContent: result });
            } else {
                throw new Error(`Unknown task: ${task}`);
            }
        } catch (error) {
            parentPort.postMessage({ requestId, error: error.message });
        }
    });
    
    // 通知主线程工作线程已就绪
    parentPort.postMessage({ workerId, status: 'ready' });
}

// 使用示例
async function main() {
    try {
        // 连接Redis
        await redisClient.connect();
        
        // 创建内容生成器
        const generator = new AIContentGenerator({
            apiKey: 'your-api-key',
            cacheEnabled: true,
            cacheTTL: 3600,
            workerCount: 4
        });
        
        // 生成单篇内容
        const content = await generator.generateContent({
            topic: '夏日护肤',
            style: '轻松活泼',
            keywords: ['护肤', '夏天', '清爽'],
            length: 'medium'
        });
        
        console.log('Generated content:', content);
        
        // 优化内容
        const optimizedContent = await generator.optimizeContent(content, {
            optimizeFor: 'engagement',
            platform: 'xiaohongshu'
        });
        
        console.log('Optimized content:', optimizedContent);
        
        // 批量生成内容
        const batchTasks = [
            { topic: '健身饮食', style: '专业严谨', keywords: ['健身', '饮食', '健康'] },
            { topic: '旅行攻略', style: '轻松活泼', keywords: ['旅行', '攻略', '假期'] },
            { topic: '读书笔记', style: '文艺清新', keywords: ['读书', '笔记', '思考'] }
        ];
        
        const batchResults = await generator.generateBatchContent(batchTasks);
        console.log('Batch results:', batchResults);
        
        // 关闭生成器
        await generator.close();
    } catch (error) {
        console.error('Error:', error);
    } finally {
        // 确保Redis连接关闭
        await redisClient.quit();
    }
}

// 运行示例
if (require.main === module) {
    main();
}

module.exports = { AIContentGenerator, TaskQueue };

这段JavaScript代码实现了一个高性能的AI内容生成系统,使用了多种优化技术来提升性能。主要特点包括:

1. 多线程处理:使用Node.js的Worker Threads模块创建多个工作线程,并行处理内容生成任务,大幅提升处理速度。

2. 任务队列:实现了TaskQueue类,控制并发任务数量,避免系统过载。

3. 缓存机制:使用Redis缓存生成的内容,减少重复计算,提高响应速度。

4. 异步处理:全面采用异步编程模式,避免阻塞,提高系统吞吐量。

5. 批量处理:支持批量生成内容,进一步提高效率。

6. 超时控制:为每个任务设置超时时间,防止系统因长时间等待而卡死。

代码中的AIContentGenerator类是核心组件,提供了内容生成、内容优化和批量处理等功能。工作线程(ai-worker.js)负责实际的内容生成和优化工作,主线程负责任务调度和结果收集。这种架构可以充分利用多核CPU的性能,特别适合处理大量并发的AI内容生成请求。

在实际应用中,你需要将callAIService和optimizeContent函数替换为实际的AI服务调用,以实现真正的AI内容生成和优化功能。