豆包AI模型如何批量生成高质量SEO文章并自动发布

在当前内容创作领域,豆包AI模型已成为提升文章生产效率的强大工具。通过合理配置,你可以利用豆包AI模型实现批量生成高质量SEO文章,并完成自动发布流程,大幅提升网站内容更新频率和搜索引擎收录效果。

豆包AI模型批量生成SEO文章的基础配置

要实现豆包AI模型批量生成SEO文章,首先需要完成基础配置工作。这些配置将直接影响生成文章的质量和SEO效果。


{
  "api_config": {
    "model": "doubao-v3",
    "api_key": "your_api_key_here",
    "endpoint": "https://api.doubao.com/v1/generate",
    "max_tokens": 2000,
    "temperature": 0.7
  },
  "seo_settings": {
    "keyword_density": 0.02,
    "meta_description_length": 160,
    "title_length_range": [50, 60],
    "heading_structure": true,
    "lsi_keywords": true
  },
  "batch_settings": {
    "articles_per_batch": 10,
    "interval_seconds": 30,
    "max_retries": 3,
    "output_format": "markdown"
  }
}

以上配置代码展示了豆包AI模型批量生成SEO文章的基础参数设置。其中,api_config部分定义了模型选择和API连接参数;seo_settings部分控制文章的SEO优化程度;batch_settings部分则管理批量生成的具体行为。特别需要注意的是,temperature参数设置为0.7可以在保证内容多样性的同时维持一定的准确性,而keyword_density设置为0.02(即2%)是当前搜索引擎优化的最佳实践。

警告:使用豆包AI模型生成文章时,请确保遵守相关平台的内容政策,避免生成低质量或重复内容,否则可能导致搜索引擎惩罚。

长尾关键词管理与智能生成策略

高效的长尾关键词管理是豆包AI模型生成高质量SEO文章的关键环节。通过系统化的关键词管理,你可以确保生成的文章既符合用户搜索意图,又能获得良好的搜索引擎排名。

关键词类型 获取方式 使用频率 竞争度
行业核心词 手动输入 每篇文章1-2个
长尾搜索词 搜索引擎API 每篇文章3-5个
LSI关键词 AI自动生成 每篇文章5-8个

实现长尾关键词的自动化管理可以通过以下代码完成:


import requests
import json
from datetime import datetime

class KeywordManager:
    def __init__(self, api_config):
        self.api_config = api_config
        self.keyword_database = []
        
    def fetch_trending_keywords(self, industry, count=50):
        """从搜索引擎获取热门长尾关键词"""
        url = f"https://api.doubao.com/v1/keywords/trending"
        params = {
            "industry": industry,
            "count": count,
            "api_key": self.api_config["api_key"]
        }
        response = requests.get(url, params=params)
        if response.status_code == 200:
            return response.json()["keywords"]
        return []
    
    def generate_lsi_keywords(self, primary_keywords):
        """使用豆包AI生成LSI关键词"""
        url = self.api_config["endpoint"]
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {self.api_config['api_key']}"
        }
        prompt = f"为以下关键词生成相关的LSI关键词: {', '.join(primary_keywords)}"
        data = {
            "model": self.api_config["model"],
            "prompt": prompt,
            "max_tokens": 500,
            "temperature": 0.7
        }
        response = requests.post(url, headers=headers, json=data)
        if response.status_code == 200:
            result = response.json()
            return result["text"].split(", ")
        return []
    
    def organize_keywords(self, keywords):
        """组织关键词并分类存储"""
        organized = {
            "primary": [],
            "secondary": [],
            "lsi": []
        }
        for keyword in keywords:
            if keyword["search_volume"] > 10000:
                organized["primary"].append(keyword)
            elif keyword["search_volume"] > 1000:
                organized["secondary"].append(keyword)
            else:
                organized["lsi"].append(keyword)
        return organized

这段Python代码实现了关键词管理的核心功能,包括从搜索引擎获取热门长尾关键词、使用豆包AI生成LSI关键词以及组织关键词分类存储。在实际应用中,你可以根据需要调整fetch_trending_keywords方法中的count参数,控制获取的关键词数量。generate_lsi_keywords方法则利用豆包AI的语义理解能力,为主关键词生成相关的LSI(Latent Semantic Indexing)关键词,这些关键词有助于提升文章的语义相关性和SEO效果。

豆包AI模型批量生成文章的实现方法

完成关键词管理后,下一步是实现豆包AI模型的批量文章生成功能。以下代码展示了如何构建一个高效的批量文章生成系统:


import time
import random
from typing import List, Dict

class ArticleGenerator:
    def __init__(self, api_config, seo_settings):
        self.api_config = api_config
        self.seo_settings = seo_settings
        
    def generate_article(self, keyword_data: Dict) -> str:
        """使用豆包AI生成单篇文章"""
        url = self.api_config["endpoint"]
        headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {self.api_config['api_key']}"
        }
        
         构建文章生成提示
        prompt = self._build_article_prompt(keyword_data)
        
        data = {
            "model": self.api_config["model"],
            "prompt": prompt,
            "max_tokens": self.api_config["max_tokens"],
            "temperature": self.api_config["temperature"]
        }
        
        response = requests.post(url, headers=headers, json=data)
        if response.status_code == 200:
            return response.json()["text"]
        return ""
    
    def _build_article_prompt(self, keyword_data: Dict) -> str:
        """构建文章生成提示词"""
        primary_keywords = keyword_data.get("primary", [])
        secondary_keywords = keyword_data.get("secondary", [])
        lsi_keywords = keyword_data.get("lsi", [])
        
        prompt = f"""
        请生成一篇SEO优化的文章,要求如下:
        
        1. 主要关键词: {', '.join(primary_keywords)}
        2. 次要关键词: {', '.join(secondary_keywords)}
        3. LSI关键词: {', '.join(lsi_keywords)}
        
        文章要求:
        - 标题包含主要关键词,长度在{self.seo_settings['title_length_range'][0]}-{self.seo_settings['title_length_range'][1]}个字符之间
        - 包含适当的H2和H3子标题,形成清晰的层级结构
        - 关键词密度保持在{self.seo_settings['keyword_density']}左右
        - 生成{self.seo_settings['meta_description_length']}字符的meta描述
        - 内容原创,信息丰富,具有实用价值
        - 自然流畅地融入所有关键词
        """
        
        return prompt
    
    def generate_batch_articles(self, keyword_list: List[Dict], batch_size: int, interval: int) -> List[str]:
        """批量生成文章"""
        articles = []
        total_batches = (len(keyword_list) + batch_size - 1) // batch_size
        
        for batch_idx in range(total_batches):
            start_idx = batch_idx  batch_size
            end_idx = min((batch_idx + 1)  batch_size, len(keyword_list))
            batch_keywords = keyword_list[start_idx:end_idx]
            
            batch_articles = []
            for keyword_data in batch_keywords:
                article = self.generate_article(keyword_data)
                if article:
                    batch_articles.append(article)
                time.sleep(interval)   避免API请求过于频繁
            
            articles.extend(batch_articles)
            
             如果不是最后一批,则等待更长时间
            if batch_idx < total_batches - 1:
                sleep_time = random.randint(30, 60)
                time.sleep(sleep_time)
        
        return articles

这段代码实现了一个完整的文章生成系统,包括单篇文章生成和批量文章生成功能。generate_article方法负责调用豆包AI API生成单篇文章,而generate_batch_articles方法则实现了批量生成逻辑,通过合理的批处理和间隔设置,确保系统稳定运行并避免API限制。_build_article_prompt方法根据SEO设置构建详细的提示词,指导豆包AI生成符合要求的文章。

提示:在实际使用中,建议将生成的文章进行人工审核和轻微修改,以确保内容质量和准确性。虽然豆包AI模型生成的文章已经相当不错,但人工审核仍然是保证内容质量的重要环节。

文章自动发布与搜索引擎推送

生成文章后,下一步是实现自动发布和搜索引擎推送功能。以下代码展示了如何构建一个完整的文章发布系统:


import xmlrpc.client
from datetime import datetime

class ArticlePublisher:
    def __init__(self, cms_config, search_engine_config):
        self.cms_config = cms_config
        self.search_engine_config = search_engine_config
        
    def publish_to_wordpress(self, article: str, keyword_data: Dict) -> bool:
        """将文章发布到WordPress网站"""
        try:
             解析文章内容
            title, content, meta_desc = self._parse_article(article)
            
             连接WordPress XML-RPC接口
            wp_url = self.cms_config["xmlrpc_url"]
            wp_username = self.cms_config["username"]
            wp_password = self.cms_config["password"]
            
            server = xmlrpc.client.ServerProxy(wp_url)
            
             准备文章数据
            post = {
                'title': title,
                'description': content,
                'mt_excerpt': meta_desc,
                'mt_keywords': ', '.join(keyword_data["primary"] + keyword_data["secondary"]),
                'post_status': 'publish'
            }
            
             发布文章
            post_id = server.metaWeblog.newPost(
                '', wp_username, wp_password, post, True
            )
            
             设置文章分类和标签
            categories = keyword_data.get("categories", [])
            tags = keyword_data.get("lsi", [])
            
            if categories or tags:
                server.mt.setPostCategories(
                    post_id, wp_username, wp_password,
                    [{'categoryId': cat} for cat in categories]
                )
                
                server.wp.setTags(
                    post_id, wp_username, wp_password, tags
                )
            
            return True
            
        except Exception as e:
            print(f"发布文章时出错: {str(e)}")
            return False
    
    def _parse_article(self, article: str) -> tuple:
        """解析文章内容,提取标题、正文和meta描述"""
        lines = article.split('n')
        title = lines[0].strip(' ').strip()
        
         查找meta描述(通常在文章开头)
        meta_desc = ""
        content_start = 0
        for i, line in enumerate(lines[1:], 1):
            if line.startswith("Meta描述:"):
                meta_desc = line.split("Meta描述:")[1].strip()
                content_start = i + 1
                break
        
         提取正文内容
        content = 'n'.join(lines[content_start:]).strip()
        
        return title, content, meta_desc
    
    def submit_to_search_engines(self, url: str) -> Dict[str, bool]:
        """将新文章URL提交给搜索引擎"""
        results = {}
        
         提交给百度
        if "baidu" in self.search_engine_config:
            baidu_result = self._submit_to_baidu(url)
            results["baidu"] = baidu_result
        
         提交给谷歌
        if "google" in self.search_engine_config:
            google_result = self._submit_to_google(url)
            results["google"] = google_result
        
         提交给必应
        if "bing" in self.search_engine_config:
            bing_result = self._submit_to_bing(url)
            results["bing"] = bing_result
        
        return results
    
    def _submit_to_baidu(self, url: str) -> bool:
        """提交URL到百度"""
        try:
            api_url = "http://data.zz.baidu.com/urls"
            params = {
                "site": self.search_engine_config["baidu"]["site"],
                "token": self.search_engine_config["baidu"]["token"]
            }
            
            headers = {'Content-Type': 'text/plain'}
            data = url
            
            response = requests.post(api_url, params=params, headers=headers, data=data)
            
            if response.status_code == 200:
                result = response.json()
                return result.get("success", 0) > 0
            
            return False
            
        except Exception as e:
            print(f"提交到百度时出错: {str(e)}")
            return False
    
    def _submit_to_google(self, url: str) -> bool:
        """提交URL到谷歌"""
        try:
            api_url = f"https://www.google.com/ping?sitemap={url}"
            response = requests.get(api_url)
            
            return response.status_code == 200
            
        except Exception as e:
            print(f"提交到谷歌时出错: {str(e)}")
            return False
    
    def _submit_to_bing(self, url: str) -> bool:
        """提交URL到必应"""
        try:
            api_url = "https://ssl.bing.com/webmaster/api.svc/json/SubmitUrl"
            headers = {
                'Content-Type': 'application/json',
                'Authorization': f'Bearer {self.search_engine_config["bing"]["api_key"]}'
            }
            data = {
                "siteUrl": self.search_engine_config["bing"]["site_url"],
                "url": url
            }
            
            response = requests.post(api_url, headers=headers, json=data)
            
            return response.status_code == 200
            
        except Exception as e:
            print(f"提交到必应时出错: {str(e)}")
            return False

这段代码实现了一个完整的文章发布系统,包括将文章发布到WordPress网站和将新文章URL提交给搜索引擎的功能。publish_to_wordpress方法使用WordPress的XML-RPC接口发布文章,并设置文章的分类和标签。submit_to_search_engines方法则实现了将新文章URL提交给百度、谷歌和必应等主流搜索引擎的功能,加速文章的收录和排名。

完整工作流程整合与定时任务设置

将上述各部分整合为一个完整的工作流程,并设置定时任务,可以实现豆包AI模型的自动化文章生成和发布。以下代码展示了如何整合整个系统:


import schedule
import time
from threading import Thread

class AutomatedContentSystem:
    def __init__(self, config):
        self.config = config
        self.keyword_manager = KeywordManager(config["api_config"])
        self.article_generator = ArticleGenerator(
            config["api_config"], 
            config["seo_settings"]
        )
        self.article_publisher = ArticlePublisher(
            config["cms_config"],
            config["search_engine_config"]
        )
        
    def run_content_cycle(self):
        """执行一次完整的内容生成和发布周期"""
        print(f"开始内容生成周期: {datetime.now()}")
        
         1. 获取关键词
        trending_keywords = self.keyword_manager.fetch_trending_keywords(
            self.config["industry"],
            self.config["keywords_per_cycle"]
        )
        
        if not trending_keywords:
            print("未获取到关键词,跳过此周期")
            return
        
         2. 组织关键词
        organized_keywords = self.keyword_manager.organize_keywords(trending_keywords)
        
         3. 生成LSI关键词
        for keyword_group in organized_keywords.values():
            for keyword in keyword_group:
                primary_keywords = [keyword["term"]]
                lsi_keywords = self.keyword_manager.generate_lsi_keywords(primary_keywords)
                keyword["lsi"] = lsi_keywords
        
         4. 批量生成文章
        articles = self.article_generator.generate_batch_articles(
            organized_keywords["primary"] + organized_keywords["secondary"],
            self.config["batch_settings"]["articles_per_batch"],
            self.config["batch_settings"]["interval_seconds"]
        )
        
         5. 发布文章并提交到搜索引擎
        published_urls = []
        for i, article in enumerate(articles):
            keyword_data = {
                "primary": [k["term"] for k in organized_keywords["primary"]],
                "secondary": [k["term"] for k in organized_keywords["secondary"]],
                "lsi": [k["term"] for k in organized_keywords["lsi"]],
                "categories": self.config["default_categories"]
            }
            
            success = self.article_publisher.publish_to_wordpress(article, keyword_data)
            
            if success:
                 假设文章URL格式为:https://example.com/post/{post_id}
                post_id = i + 1   实际应用中应从发布响应中获取
                url = f"{self.config['cms_config']['site_url']}/post/{post_id}"
                published_urls.append(url)
                
                 提交到搜索引擎
                self.article_publisher.submit_to_search_engines(url)
                
                print(f"成功发布文章: {url}")
            else:
                print(f"发布文章失败")
            
             间隔一段时间再发布下一篇文章
            time.sleep(self.config["publish_interval"])
        
        print(f"内容生成周期完成,共发布 {len(published_urls)} 篇文章")
        return published_urls
    
    def start_scheduled_tasks(self):
        """启动定时任务"""
         每天早上8点执行一次
        schedule.every().day.at("08:00").do(self.run_content_cycle)
        
         每周一、三、五下午2点执行一次
        schedule.every().monday.at("14:00").do(self.run_content_cycle)
        schedule.every().wednesday.at("14:00").do(self.run_content_cycle)
        schedule.every().friday.at("14:00").do(self.run_content_cycle)
        
        print("定时任务已启动")
        
         在单独的线程中运行定时任务
        def run_continuously():
            while True:
                schedule.run_pending()
                time.sleep(60)
        
        thread = Thread(target=run_continuously)
        thread.daemon = True
        thread.start()

 配置示例
config = {
    "api_config": {
        "model": "doubao-v3",
        "api_key": "your_api_key_here",
        "endpoint": "https://api.doubao.com/v1/generate",
        "max_tokens": 2000,
        "temperature": 0.7
    },
    "seo_settings": {
        "keyword_density": 0.02,
        "meta_description_length": 160,
        "title_length_range": [50, 60],
        "heading_structure": True,
        "lsi_keywords": True
    },
    "batch_settings": {
        "articles_per_batch": 10,
        "interval_seconds": 30,
        "max_retries": 3,
        "output_format": "markdown"
    },
    "cms_config": {
        "xmlrpc_url": "https://example.com/xmlrpc.php",
        "username": "your_username",
        "password": "your_password",
        "site_url": "https://example.com"
    },
    "search_engine_config": {
        "baidu": {
            "site": "example.com",
            "token": "your_baidu_token"
        },
        "google": {
            "enabled": True
        },
        "bing": {
            "api_key": "your_bing_api_key",
            "site_url": "https://example.com"
        }
    },
    "industry": "technology",
    "keywords_per_cycle": 20,
    "default_categories": [1, 2, 3],   分类ID
    "publish_interval": 60   发布间隔(秒)
}

 启动系统
if __name__ == "__main__":
    system = AutomatedContentSystem(config)
    system.start_scheduled_tasks()
    
     保持主线程运行
    try:
        while True:
            time.sleep(60)
    except KeyboardInterrupt:
        print("系统已停止")

这段代码整合了整个自动化内容系统,包括关键词管理、文章生成和发布功能。AutomatedContentSystem类提供了完整的工作流程,从获取关键词到发布文章并提交到搜索引擎。start_scheduled_tasks方法设置了定时任务,可以按照预定时间自动执行内容生成和发布周期。在实际应用中,你可以根据需要调整定时任务的频率和时间,以及每次生成文章的数量。

警告:在使用自动化内容系统时,请确保遵守各平台的使用条款和服务协议,避免过于频繁的API请求或内容发布,以免被限制或封禁。建议在正式部署前进行充分测试,并根据实际情况调整系统参数。

系统监控与性能优化

为了确保豆包AI模型批量生成SEO文章的系统稳定运行,需要实现系统监控和性能优化功能。以下代码展示了如何构建一个基本的监控系统:


import psutil
import logging
from datetime import datetime, timedelta
import json
import os

class SystemMonitor:
    def __init__(self, config):
        self.config = config
        self.log_file = config.get("log_file", "system_monitor.log")
        self.metrics_file = config.get("metrics_file", "performance_metrics.json")
        self.alert_thresholds = config.get("alert_thresholds", {
            "cpu_usage": 80,
            "memory_usage": 80,
            "disk_usage": 90,
            "api_failure_rate": 10,
            "publish_failure_rate": 5
        })
        
         设置日志
        logging.basicConfig(
            level=logging.INFO,
            format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
            handlers=[
                logging.FileHandler(self.log_file),
                logging.StreamHandler()
            ]
        )
        self.logger = logging.getLogger('SystemMonitor')
        
         初始化性能指标
        self.performance_metrics = {
            "api_calls": {
                "total": 0,
                "successful": 0,
                "failed": 0,
                "response_times": []
            },
            "article_publishing": {
                "total": 0,
                "successful": 0,
                "failed": 0,
                "publish_times": []
            },
            "system_resources": {
                "cpu_usage": [],
                "memory_usage": [],
                "disk_usage": []
            },
            "last_updated": datetime.now().isoformat()
        }
        
         加载历史性能指标
        self._load_metrics()
    
    def _load_metrics(self):
        """加载历史性能指标"""
        if os.path.exists(self.metrics_file):
            try:
                with open(self.metrics_file, 'r') as f:
                    self.performance_metrics = json.load(f)
            except Exception as e:
                self.logger.error(f"加载性能指标失败: {str(e)}")
    
    def _save_metrics(self):
        """保存性能指标"""
        try:
            with open(self.metrics_file, 'w') as f:
                json.dump(self.performance_metrics, f, indent=2)
        except Exception as e:
            self.logger.error(f"保存性能指标失败: {str(e)}")
    
    def log_api_call(self, success: bool, response_time: float):
        """记录API调用情况"""
        self.performance_metrics["api_calls"]["total"] += 1
        
        if success:
            self.performance_metrics["api_calls"]["successful"] += 1
        else:
            self.performance_metrics["api_calls"]["failed"] += 1
        
        self.performance_metrics["api_calls"]["response_times"].append(response_time)
        
         保持响应时间列表在合理范围内
        if len(self.performance_metrics["api_calls"]["response_times"]) > 1000:
            self.performance_metrics["api_calls"]["response_times"] = 
                self.performance_metrics["api_calls"]["response_times"][-1000:]
        
         检查API失败率
        failure_rate = self._calculate_failure_rate("api_calls")
        if failure_rate > self.alert_thresholds["api_failure_rate"]:
            self.logger.warning(f"API失败率过高: {failure_rate:.2f}%")
        
        self._save_metrics()
    
    def log_article_publishing(self, success: bool, publish_time: float):
        """记录文章发布情况"""
        self.performance_metrics["article_publishing"]["total"] += 1
        
        if success:
            self.performance_metrics["article_publishing"]["successful"] += 1
        else:
            self.performance_metrics["article_publishing"]["failed"] += 1
        
        self.performance_metrics["article_publishing"]["publish_times"].append(publish_time)
        
         保持发布时间列表在合理范围内
        if len(self.performance_metrics["article_publishing"]["publish_times"]) > 1000:
            self.performance_metrics["article_publishing"]["publish_times"] = 
                self.performance_metrics["article_publishing"]["publish_times"][-1000:]
        
         检查发布失败率
        failure_rate = self._calculate_failure_rate("article_publishing")
        if failure_rate > self.alert_thresholds["publish_failure_rate"]:
            self.logger.warning(f"文章发布失败率过高: {failure_rate:.2f}%")
        
        self._save_metrics()
    
    def _calculate_failure_rate(self, metric_type: str) -> float:
        """计算失败率"""
        metrics = self.performance_metrics[metric_type]
        if metrics["total"] == 0:
            return 0.0
        
        return (metrics["failed"] / metrics["total"])  100
    
    def check_system_resources(self):
        """检查系统资源使用情况"""
        cpu_usage = psutil.cpu_percent(interval=1)
        memory_usage = psutil.virtual_memory().percent
        disk_usage = psutil.disk_usage('/').percent
        
        self.performance_metrics["system_resources"]["cpu_usage"].append({
            "value": cpu_usage,
            "timestamp": datetime.now().isoformat()
        })
        
        self.performance_metrics["system_resources"]["memory_usage"].append({
            "value": memory_usage,
            "timestamp": datetime.now().isoformat()
        })
        
        self.performance_metrics["system_resources"]["disk_usage"].append({
            "value": disk_usage,
            "timestamp": datetime.now().isoformat()
        })
        
         保持资源使用记录在合理范围内
        for resource in ["cpu_usage", "memory_usage", "disk_usage"]:
            if len(self.performance_metrics["system_resources"][resource]) > 1000:
                self.performance_metrics["system_resources"][resource] = 
                    self.performance_metrics["system_resources"][resource][-1000:]
        
         检查资源使用是否超过阈值
        if cpu_usage > self.alert_thresholds["cpu_usage"]:
            self.logger.warning(f"CPU使用率过高: {cpu_usage}%")
        
        if memory_usage > self.alert_thresholds["memory_usage"]:
            self.logger.warning(f"内存使用率过高: {memory_usage}%")
        
        if disk_usage > self.alert_thresholds["disk_usage"]:
            self.logger.warning(f"磁盘使用率过高: {disk_usage}%")
        
        self._save_metrics()
    
    def generate_performance_report(self, days: int = 7) -> str:
        """生成性能报告"""
        report = []
        report.append(f"系统性能报告 ({days} 天)")
        report.append("="  50)
        
         API调用统计
        api_metrics = self.performance_metrics["api_calls"]
        api_success_rate = (api_metrics["successful"] / api_metrics["total"]  100) if api_metrics["total"] > 0 else 0
        avg_api_response_time = sum(api_metrics["response_times"]) / len(api_metrics["response_times"]) if api_metrics["response_times"] else 0
        
        report.append("API调用统计:")
        report.append(f"  总调用次数: {api_metrics['total']}")
        report.append(f"  成功次数: {api_metrics['successful']}")
        report.append(f"  失败次数: {api_metrics['failed']}")
        report.append(f"  成功率: {api_success_rate:.2f}%")
        report.append(f"  平均响应时间: {avg_api_response_time:.2f}秒")
        
         文章发布统计
        publish_metrics = self.performance_metrics["article_publishing"]
        publish_success_rate = (publish_metrics["successful"] / publish_metrics["total"]  100) if publish_metrics["total"] > 0 else 0
        avg_publish_time = sum(publish_metrics["publish_times"]) / len(publish_metrics["publish_times"]) if publish_metrics["publish_times"] else 0
        
        report.append("n文章发布统计:")
        report.append(f"  总发布次数: {publish_metrics['total']}")
        report.append(f"  成功次数: {publish_metrics['successful']}")
        report.append(f"  失败次数: {publish_metrics['failed']}")
        report.append(f"  成功率: {publish_success_rate:.2f}%")
        report.append(f"  平均发布时间: {avg_publish_time:.2f}秒")
        
         系统资源统计
        report.append("n系统资源统计:")
        
        for resource in ["cpu_usage", "memory_usage", "disk_usage"]:
            resource_data = self.performance_metrics["system_resources"][resource]
            if resource_data:
                 计算最近N天的平均值
                cutoff_date = datetime.now() - timedelta(days=days)
                recent_data = [d for d in resource_data 
                              if datetime.fromisoformat(d["timestamp"]) > cutoff_date]
                
                if recent_data:
                    avg_usage = sum(d["value"] for d in recent_data) / len(recent_data)
                    max_usage = max(d["value"] for d in recent_data)
                    
                    resource_name = resource.replace("_", " ").title()
                    report.append(f"  {resource_name}:")
                    report.append(f"    平均使用率: {avg_usage:.2f}%")
                    report.append(f"    最高使用率: {max_usage:.2f}%")
        
        return "n".join(report)
    
    def start_monitoring(self, interval: int = 60):
        """启动系统监控"""
        self.logger.info("系统监控已启动")
        
        def monitor_continuously():
            while True:
                self.check_system_resources()
                time.sleep(interval)
        
        thread = Thread(target=monitor_continuously)
        thread.daemon = True
        thread.start()

这段代码实现了一个完整的系统监控系统,包括API调用监控、文章发布监控和系统资源监控。SystemMonitor类提供了记录各种性能指标的方法,并可以生成详细的性能报告。通过设置适当的阈值,系统可以在性能指标异常时发出警告,帮助及时发现和解决问题。在实际应用中,你可以根据需要调整监控频率和阈值设置,确保系统稳定运行。

提示:建议定期检查系统性能报告,分析系统运行状况,并根据实际情况调整系统参数。例如,如果发现API响应时间过长,可以考虑优化提示词或调整批处理大小;如果发现系统资源使用率过高,可以考虑增加服务器资源或优化代码效率。

通过整合上述各部分功能,你可以构建一个完整的豆包AI模型批量生成SEO文章并自动发布的系统。这个系统能够自动获取热门长尾关键词,生成高质量SEO文章,并发布到网站后提交给搜索引擎,大幅提升内容生产效率和网站SEO效果。同时,通过系统监控功能,你可以确保系统稳定运行,并及时发现和解决潜在问题。